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Peierls-Boltzmann equation for ballistic deposition
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We consider nonlinear stochastic field equations. Going over to a Fokker-Planck description, we construct a
self-consistent expansion around a model evolution equation. In second order the equation for the two-point
function resembles the Peierls-Boltzmann equation for the average number of phonons, but involves also the
unknown characteristic frequency function. Within the same expansion we obtain an equation for that function
too. The two coupled equations are studied specifically for the case of ballistic deposition. We show how to
obtain the exact asymptotic solution of the two coupled nonlinear integral equations obtained in second order.
Higher orders are also discussed.@S1063-651X~98!03005-0#

PACS number~s!: 81.15.Lm
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I. INTRODUCTION

Many interesting phenomena in condensed-matter phy
are described by nonlinear equations driven by rand
forces. A long list of examples includes turbulence, critic
dynamics, and the dynamics of interacting polymers. Ma
of these examples are difficult, not only because of th
nonlinearity, but for other problems such as convergence
ficulties in turbulence and topological difficulties in poly
mers. However, the problem of nonlinear deposition theo
as described by the Kardar-Parisi-Zhang~KPZ! @1# equation,
is a benign example, showing fully nonlinear behavior, b
without other difficulties. It has a quadratic nonlinearit
which leads to manageable mathematics. This feature
longs to physical systems that are dissipative; Hamilton
systems are notably more difficult. In a previous publicat
we gave a brief description of a self-consistent expans
that allowed a direct calculation of the indices that char
terize the correlation functions of that equation@2#. The
method is based on going over from the KPZ equation
Langevin form to a Fokker-Planck form and constructing
self-consistent expansion of the distribution for the field co
cerned and hence the required observables. The method
duced useful equations at second order of nonlinear cou
integral equations, which can be solved exactly in
asymptotic limit to yield exponents governing the stead
state behavior and the time evolution, although this la
problem is not dealt with in detail in this paper. The pres
article gives a detailed explanation of the method not only
show how and why it works for the KPZ equation, but al
to show how other systems can be studied.

The article is organized as follows. In Sec. II we obta
the Fokker-Planck equation derived from a gene
Langevin-like field equation. The idea of choosing a mo
system that is soluble and approximates the nonsoluble
tem, is described in Sec. III. A second-order expans
around such a model is used in Sec. IV to obtain a Peie
Boltzmann equation for the static two-point function in term
of an undetermined characteristic frequency function. D
571063-651X/98/57~5!/5730~10!/$15.00
cs
m
l
y
ir
if-

,

t

e-
n
n
n
-

n

-
ro-
ed
e
-
r
t
o

c
l
s-
n
s-

-

namical arguments are used in Sec. V to derive an equa
for the characteristic frequency. The resultant two coup
nonlinear integral equations for the static two-point functi
and the characteristic frequency are discussed in Sec. VI.
show how to obtain the exact exponents describing
asymptotic small-q behavior of the two functions. Higher
order expansions are considered in Sec. VII. It is shown
a strong-coupling consistent expansion is possible only
certain scaling relation between the exponents characteri
the two-point function and the characteristic frequency
obeyed. It is very interesting that this scaling relation is ide
tical to the one that follows from the dynamical argumen
The construction of the small-q asymptotic solution is de-
tailed in the Appendix.

II. NONLINEAR EQUATIONS

We study a fieldh(r ,t), hk(t), or hkv in progressive Fou-
rier transforms, which satisfies the equation

]hk

]t
2nkhk1(

j ,l
Mk jlhjhl1 (

j ,l ,m
Nk jlmhjhlhm1¯5hk ,

~2.1!

where usuallyM ,N have k1 j 1 l 50, k1 j 1 l 1m50, etc.
The variablehk is noise driving the equation and usually h
the form

^hk&50, ~2.2!

^h~r ,t !h~r 8,t8!&52D~r2r 8!d~ t2t8!, ~2.3!

or in the simplest case

2D0d~r2r 8!d~ t2t8!. ~2.4!

An example is the KPZ equation for a heighth,

]h

]t
2n¹2h1g~“h!25h~r ,t !. ~2.5!
5730 © 1998 The American Physical Society
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57 5731PEIERLS-BOLTZMANN EQUATION FOR BALLISTIC . . .
Equation~2.2! means that the heighth is measured relative
to the mean. The linear equation

]h

]t
2n¹2h5h ~2.6!

already contains much interesting physics@3#, but when the
nonlinear term is included the correlation function

^h~r ,t !h~r 8,t8!&5f~r2r 8,t2t8! ~2.7!

has a composite behavior, which leads to the breakdownq
space into regions characterized by the different behavio
its Fourier transform. At lowq it exhibits power-law behav-
ior. In Fourier variables the KPZ equation is

]hq

]t
1nq2hq1

g

AV
(

l
l •~q2 l !hlhq2 l5hq~ t !, ~2.8!

i.e.,

nq5nq2, ~2.9!

Mqlm5dq1 l 1m~ l •m!
g

AV
. ~2.10!

HereV is the volume of the system and passing to largeV,
the Fourier components run into the continuum. From
~2.1! we can pass to Liouville’s equation

]P

]t
1(

q

]

]h2q
Fnqhq1(

l ,m
Mqlmhlhm1h2qGP50,

~2.11!

whereP is the probability thathq(t) has the valuehq :

P5)
q

d„hq~ t !2hq…. ~2.12!

Whenh satisfies Eq.~2.4!, i.e., fluctuates locally in time, the
average ofP over h satisfies

]

]t
^P&1(

q

]

]h2q
FD0q

]

]hq
1nqh2q1(

l ,m
MqlmhlhmG ^P&

[
]

]t
^P&1L^P&50. ~2.13!

This can easily be shown by expanding Eq.~2.11! in h and
then averaging term by term, resuming, or by many ot
methods: It is a standard result.

Henceforth^P& will be referred to asP. An exact proof
has been given that a steady state exists for the KPZ equ
~in the caseD0q5D0! in one dimension@4#. ~The steady
state is a simple Gaussian.! In higher dimensions the exis
tence of a steady state follows from numerical simulatio
Therefore, we assume in this paper without proof that th
exists a steady-state solution

]P

]t
50 ~2.14!
of

.

r

ion

.
re

in any number of dimensions.
In general, it is difficult to envisage circumstances wh

this will not be the case. Even when, in the case of flu
turbulence, there are well-established long-lived fluctuatio
over a longer period again one expects Eq.~2.14! to hold.
Thus our problem is now reduced to

LP50. ~2.15!

In the next section we will propose a systematic appro
to a solution and in Sec. IV give details of the solution.

III. MODELS AND EXPANSIONS

In the following we describe the motivation for our sel
consistent expansion. Suppose the nonlinear term in Eq.~2.8!
was modeled as if it were an addition toh, i.e., suppose

K (
l ,m

Mqlmhl~ t !hm~ t ! (
l 8,m8

M 2q82 l 82m8h2 l 8~0!h2m8~0!L
5D1qd~ t !dqq8 . ~3.1!

Then Eq.~2.13! would be modeled by

]P

]t
1(

q

]

]h2q
F ~D0q1D1q!

]

]hq
1nqh2qGP50,

~3.2!

an equation that is soluble, being a version of Hermit
equation. The full solution requires, of course,D1q , but this
can be done self-consistently. This is not the most gen
soluble form, for when problems in, say, plasma physics
resolved by the derivation of a Fokker Planck equation~see
e.g.,@5#! the form derived@for the velocity distributionP(v)
in that case# is

]P

]t
1(

i , j

]

]v i
Di j ~v !

]

]v j
P1(

i , j

]

]v i
m i j ~v !v j P50,

~3.3!

wherem is called the dynamic friction. We use a somewh
similar form as astarting pointfor the derivation of a self-
consistent model of Eq.~2.13!,

]P

]t
1(

q

]

]h2q
FDq

]

]hq
1vqh2qGP[

]P

]t
1L0P50.

~3.4!

Since this is a Hermite equation, it is soluble not only in t
homogeneous form where

P05N expS 2 1
2 ( hqfq

21h2qD , ~3.5!

]P0

]t
50 with fq5

Dq

vq
, ~3.6!

but also as a Green function

]G

]t
1L0G5)

q
d~hq2hq8!d~ t2t8!. ~3.7!
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So

G5G~¯hqhq8h2qh2q8 ,...,t2t8! ~3.8!

is available for expansions. In fact, althoughG is completely
known, it turns out that only properties of the first few eige
functions will ever be needed, so we need not describeG in
detail.

What we plan to do then is to study first the tim
independent equation

LP50 ~3.9!

by modeling its solution as an expansion around the solu
of

L0P050. ~3.10!

We have to find two equations for the functionsDq andvq
that in some sense will makeL0 the best model of its kind
describingL. It will turn out that the full details of one of the
equations are not necessary and different candidates for
equation lead for smallq to the same scaling relation relatin
vq andDq ~or fq!. The scaling relation for the KPZ equa
tion, which holds at all orders of our expansion, for smallq,
is

vq
2aqd14fq . ~3.11!

It is natural at this point to ask if problems of this kin
have been studied in the literature before and the Fok
Planck equation for plasma@5#, mentioned above, is such a
example. Another is the nonlinear interaction of phono
with an interaction very much like that of the KPZ equatio
but in a Schro¨dinger equation for the phonon field~instead of
Fokker-Planck one in our case! @6#. That is a fundamentally
simpler problem because the phonons are well approxim
by the linear part of the equation except when they sca
which comes from the nonlinear part. Peierls derived
Boltzmann equation governing the number of phononsnk ,
which looks like

]nk

]t
1E k1~k, j ,l !nknjd

3 j 2E k2~k, j ,l !nlnjd
3 j 5sources,

~3.12!

representing the annihilation of a phononk when it meets a
phononj to form a phononl ( l 1k1 j 50), with kernelK1 ,
and the creation of ak by the collision ofj and l via K2 .

We expect to find, in analogy to this Peierls-Boltzma
~PB! equation, that the steady state of deposition is given
*k1(k, j ,l )fkf j2*k2(k, j ,l )f jf l1nk2fk2Dk50, but un-
like the PB equation where, as in the classic Boltzma
equation, the kernelsk1 and k2 can be calculated from th
linear parts of the equation, in the KPZ equation the kern
are themselves part of the calculation, for at low-k values the
dynamics is dominated by the nonlinear integral terms
not by then¹2h and external noise parts. The actual kern
are quite reasonable functions expressed in terms of the c
acteristicq-dependent frequencyvq . In terms of thev’s and
the inputD, our equation takes the form
-

n

hat

er

s
,

ed
r,
a

y

n

ls

d
s
ar-

E M̃q jl M̃ q j lf jf l

vq1v j1v l
d~q1 j 1 l !ddjddl

1E M̃q jl M̃ jqlfqf l

vq1v j1v l
d~q1 j 1 l !ddjddl

1E M̃q jl M̃ l jqfqf j

vq1v j1v l
d~q1 j 1 l !ddjddl 1D0q2nqfq

50, ~3.13!

where

M̃qlm5A 2V

~2p!d Mqlm ~3.14!

and v is obtained in Sec. V. The two terms withfq are
equal, but it is so written to show the symmetry. The eq
tion for v is derived in Sec. V below and is of a similar lev
of complexity. There is some difference in the signs co
pared to the Peierls-Boltzmann equation. In the PB equa
the two nonlinear terms are positive and a natural min
appears between them as in the classic Boltzmann equa
In our equation~3.13! the termM̃q jl

2 is clearly positive, but
the signs of the other terms such asM̃q jl M̃ jql depend onq,
j , and l .

To derive Eq.~3.13! we write Eq.~3.9! as

LP[(
q

]

]h2q
FDq

]

]hq
1vqh2q1(

l ,m
Mqlmhlhm

1~D0q2Dq!
]

]hq
1~nq2vq!h2qGP50 ~3.15!

and expandP aboutP0 defined by

L0P0[(
q

]

]h2q
FDq

]

]hq
1vqh2qGP050, ~3.16!

i.e.,

P05N expF2 1
2 ( hqh2q /fqG , ~3.17!

whereN is the normalization yielding*P051 and

E hqh2qP0$h%Dh5fq . ~3.18!

Readers who are not interested in the technical derivatio
Eq. ~3.13! and in the derivation of the equation forv in Eq.
~5.4! but only in their solution can jump to Sec. VI, wher
the power-law solutions are derived, basically by show
that the power law forfq and consequently forvq will solve
Eq. ~3.13! for small q.

IV. EXPANSION OF THE TWO-POINT FUNCTION

We are interested in average quantities such as the
point function
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^hqh2q&5E hqh2qP Dh. ~4.1!

In general, Eq.~2.15! can be used to obtain a hierarchy
equations relatingn-point functions to (n11)-point func-
tions. This hierarchy will be used to derive Eq.~3.13!. The
basic step in obtaining the hierarchy is to note that by m
tiplying Eq. ~2.15! by some function of the fieldsF that is
well behaved and integrating by parts we obtain the gen
relation

(
P

D0pK ]2F

]hp]h2p
L 2npK h2p

]F

]h2p
L

2 (
P,l ,m

M PlmK hlhm

]F

]h2p
L 50. ~4.2!

Thus, if we chooseF5 1
2 hqh2q , we obtain

D0q2nq^hqh2q&2(
l ,m

Mqlm^hlhmhq&50, ~4.3!

and if we takeF5hlhmhq with indices such that the sum o
any two is not zero, we obtain

2@nq1n l1nm#^hlhmhq&2 (
l 8,m8

@M 2 l l 8m8^hl 8hm8hmhq&

1M 2ml8m8^hlhm8hlhq&1M 2ql8m8^hl 8hm8hlhm&#50,

~4.4!

and this goes on.
This hierarchy is exact and we are interested in obtain

say, the two-point function in an expansion aroundL0 . If we
write

P5P01P11P21¯ ~4.5!

and ascribe toP1 the orderM , to P2 the orderM2, and so
on, and within Eq.~3.15! we ascribe orderM2 to (D02D)
and (n2v), we obtain the following equations in schema
form to determineP1 ,P2 , etc.

L0P050, ~4.6!

L0P152
]

]h
MhhP0 , ~4.7!

L0P252
]

]h
MhhP1

2
]

]h
~D02D !

]P0

]h
2

]

]h
~n2v!hP0 , ~4.8!

etc. @The way we attached different orders ofM to different
parts ofL2L0 may look arbitrary. In Ref.@2# we attached to
all the parts ofL2L0 orderM . The equation obtained ther
is slightly different from Eq.~3.13!, but that difference has
no bearing on the small-q behavior of the two-point function
as will become evident later.# The expansion of the probabi
ity distribution P implies a corresponding expansion for a
average
l-

al

g,

^F&5^F&01^F&11^F&21¯ , ~4.9!

where^F& i is *FPiDh. We also denote

^F&~n!5(
i 50

n

^F& i . ~4.10!

Consider first Eq.~4.4!. We are interested in̂hlhmhq&
(1). It

is obtained from

@v l1vm1vq#^hlhmhq&
~1!

2@n l1nm1nq2v l2vm2vq#^hlhmhq&
~0!

2 (
l 8,m8

@M 2 l l 8m8^hl 8hm8hmhq&
~0!

1M 2ml8m8^hl 8hm8hlhq&
~0!

1@M 2ql8m8^hl 8hm8hlhm&~0!#50. ~4.11!

By definition of P0 , ^hlhmhq&
(0)50 and the required four-

point functions^hhhh& (0) are easily calculated.
The final result is

^hlhmhq&
~1!522@Mlmqfmfq1Mmlqf lfq

1Mqlmf lfm#/@v l1vm1vq#. ~4.12!

@In Eq. ~4.12! the symmetry in the two last indices ofM and
the reflection symmetry in the indices is used.# Equation
~4.3!, when taken to first order, yields

Dq2vq^hqhq&12( Mqlm^hqhlhm&050, ~4.13!

i.e.,

^hqhq&
~1!5fq . ~4.14!

The same equation considered to second order gives

Dq2vq^hqh2q&
~2!1~D0q2Dq!1~vq2nq!^hqh2q&

~1!

1(
l ,m

Mqlm^hlhmhq&
~1!50. ~4.15!

We require now that within our approximation^hqh2q&
5fq , namely,̂ hq2h2q&

(2)5fq . Using the expression ob
tained for ^hqh2q&

(1) and ^hlhmhq&
(1), Eq. ~3.13! is ob-

tained.
It is interesting to consider also the expansion for t

distribution functionP. In order to obtain a structure familia
from quantum field theory, we apply a similarity transform
tion to all the operatorshq andPq5]/]hq . The transformed
operatorÃ is given in terms of the original operatorA by

Ã5expF1

4 (
hph2p

fp
GA expF2

1

4 (
hph2p

fp
G ,

~4.16!

i.e.,

h̃q5hq ~4.17!
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and

P̃q5Pq2
1

2

h2q

fq
. ~4.18!

We define now ‘‘excitation’’ creation and destruction oper
tors hq

† andhq

hq
†5

1

2Afq

h2q2AfqPq , ~4.19!

hq5
1

2Afq

hq1AfqP2q . ~4.20!

In terms of these operators, which obey the usual Bose c
mutation relations @hq ,hp#5@hq

† ,hp
†#50 and @hq ,hp

†#
5dqp , the equation for steady state]P/]t50 is transformed
into

H (
q

vqhq
†hq1 (

q,l ,m
Mqlm

Af lAfm

Afq

h2q
†

3~h l1h2 l
† !~hm1h2m

† !2(
q

~D0q2Dq!

3
1

fq
hq

†h2q
† 1(

q
~nq2vq!hq

†~hq1h2q
† !J uS&50,

~4.21!

whereuS& is the ‘‘true ground state.’’ OnceuS& is obtained, a
steady-state average of any functionalA of the hq’s is given
by

E PA$hq%Dh5^0uA$hq%uS&, ~4.22!

whereu0& is the vacuum state defined byhqu0&50 for all q.
The function uS& is expanded now in an expansion corr
sponding to the expansion ofP,

uS&5uS0&1uS1&1uS2&1¯ . ~4.23!

Clearly,

uS0&5u0& ~4.24!

and

uS1&5(
MqlmAf lAfm

@vq1v l1vm#Afq

hq
†h l

†hm
† u0&. ~4.25!

uS0& is the ‘‘unperturbed ground state’’ anduS1& is a function
summing with the appropriate weights the states where
modesq, l , andm have gone into the first excited state.@In
deriving Eq.~4.25! two properties ofMqlm that hold for the
KPZ equation were used:Mqlm5M 2q,2 l ,2m andMqlm50 if
any of the indices vanish, recallq1 l 1m50.#

The equation foruS2& is
-

-

e

(
q

vqhq
†hquS2&1 (

q,l ,m
Mqlm

Af lAfm

Afq

h2q
† ~h l1h2 l

† !

3~hm1h2m
† !uS1&2H(

q
~D0q2Dq!

1

fq
hq

†h2q
†

1(
q

~nq2vq!hq
†~hq1h2q

† !J u0&50. ~4.26!

uS2& has the contribution of states with two, four, and s
excitations. Of special interest are the states of two exc
tions. Clearly, the momenta of the two must be paired. D
noting that part byuS2&

(2), we find

uS2&
~2!5H(

q
S D0q

1

fq
2nqD Y 2vq

12( MqlmS Mqlm

f lfm

fq
1Mlqmfm

1Mmqlf l D Y @2vq~vq1v l1vm!#J hq
†h2q

† u0&.

~4.27!

Equation~3.13!, which ensures that the correlation^hqhq&
calculated to second order is identical tofq , implies at once
that uS2&

(2) vanishes identically.
Equation~3.13! involves two unknown functionsfq and

vq . In order to obtainfq we need another equation relatin
the two.

V. DYNAMIC ARGUMENTS

We suggest thatfq andvq must be chosen in such a wa
that L0 is the best model of its kind describing the true tim
evolution operatorL. We have already made one choice
deciding that̂ hqhq& calculated to second order be identic
to fq . The other natural choice involvesvq . SinceL0 is a
very simple evolution operator, it is easily verified thatvq is
the inverse lifetime associated with the modeq. In technical
termsvq as a function ofq is the single excitation spectrum
of the evolution operator2L̃0 , obtained by the similarity
transformation~4.16! from 2L0 , namely,(vqhq

†hq . One
possible way of fittingL̃0 to L̃ is to identify vq with the
value of its perturbed counterpart.~We will see later that
there are many ways of obtaining an equation forvq , but
certainly fitting the ‘‘single excitation’’ spectra ofL̃0 and L̃
seems to be a reasonable procedure.! Let ucq& be the eigen-
state ofL̃ with momentumq that is obtained perturbatively
from ucq&

(0)5hq
†u0&. We expand

ucq&5ucq&
~0!1ucq&

~1!1ucq&
~2!1¯ ~5.1!

and the associated eigenvalueṽq is expanded

ṽq5ṽq
~0!1ṽq

~1!1ṽq
~2!1¯ , ~5.2!

where, clearly,ṽq
(0)5vq . The calculation ofṽq

(1) andṽq
(2) is

a straightforward perturbation expansion that takes into
count that some terms inL̃ are orderM and some are orde
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M2. The calculation is quite similar to that of the true grou
stateuS& presented in Sec. IV.

We find

ṽq
~1!50 ~5.3!

and

ṽq
~2!5nq2vq22( Mqlm

Mlmqfm1Mmlqf l

v l1vm
, ~5.4!

where as in the derivation of Eq.~4.25! we have used the
fact that Mql,2 l50 and some symmetry properties
the kernel Mqlm that hold for the KPZ equation~e.g.,
Mqlm5M 2q,2 l ,2m and Mqlm5Mqml!. Equation ~5.4! was
originally derived by Herring in a different context@7#. Note
that expression~3.13! contains threev’s and~5.4! two. If we
require that the eigenvaluevq is unchanged, we obtain as
second equation relatingf andv

nq2vq22( Mqlm

Mlmqfm1Mmlqf l

v l1vm
50. ~5.5!

Equation~5.5! is based on the requirement that the modelL0
should be fitted to the real evolution operator by fitting t
‘‘excitation spectrum’’ of the ‘‘perturbed singly excite
states.’’ In the following, we describe the different ‘‘chara
teristic frequency’’ fitting of the model, which was used
Ref. @2#.

Consider a system in steady state. We can measure at
zero an observableA and after timet has elapsed we ca
measure another observableB. This leads to the definition o
a correlation

^A~0!B~ t !&5E P$hq
~1!%A$hq

~1!%P$hq
~1! ,hq

~2! ,t%

3B$hq
~2!%Dhq

~1!Dhq
~2! , ~5.6!

where P$hq
(1)% is the steady-state distribution an

P$hq
(1) ,hq

(2) ,t% is the distribution of thehq
(2)’s obtained after

time t when the initial condition at time zero isPd(hq
(2)

2hq
(1)). The characteristic frequency associated withhq is

customarily defined by

1

v̄q
5

*0
`^hq~0!h2q~ t !&dt

^hqh2q&S
, ~5.7!

where in the denominator the subscriptS denotes steady
state averaging.

Using the equation of motion~2.13! for P$hq
(1) ,hq

(2) ,t%,
multiplying by P$hq

(1)%A$hq
(1)%B$hq

(2)%, integrating over
hq

(1) , and integrating by parts overhq
(2) , we obtain
me

]

]t
^A~0!B~ t !&5(

q
D0qK A~0!

]2B~ t !

]hq]h2q
L

2(
q

nqK A~0!h2q

]B~ t !

]h2q
L

2( MqlmK A~0!hlhm

]B~ t !

]h2q
L

1d~ t !^AB&S , ~5.8!

where the last term on the right-hand side arises due to
arbitrary choice^A(0)B(t)&50 for t,0, i.e., it serves to
introduce the initial conditions. Since the expression forvq
introduced in Eq.~5.7! involves integration from zero to in
finity, which can be replaced by integration from2` to `
@recall that we chosêhq(0)h2q(t)&50 for t,0#, we use the
integrated version of Eq.~5.8!,

(
q

D0qE
2`

`

dtK A~0!
]2B~ t !

]hq]h2q
L

2(
q

nqE
2`

`

dtK A~0!h2q~ t !
]B~ t !

]h2q
L

2( MqlmE
2`

`

dtK A~0!hl~ t !hm~ t !
]B

]h2q
~ t !L

1^AB&S50, ~5.9!

where the term arising from the time derivative is zero b
causê A(0)B(t)& is zero for negative time and must tend
zero for positivet tending to infinity.

We expand

1

v̄q
5S 1

v̄q
D ~0!

1S 1

v̄q
D ~1!

1S 1

v̄q
D ~2!

1¯ , ~5.10!

where clearly (1/v̄q)(0)51/vq . Choosing A5hq and B
5h2q , it is easily verified that

S 1

v̄q
D ~1!

50. ~5.11!

Second-order calculation yields

2vqS 1

v̄q
D ~2!

2(
Mqlm

fq
E

2`

`

^hq~0!hl~ t !hm~ t !&~1!dt

2~nq2vq!S 1

v̄q
D ~0!

50. ~5.12!

The next step is to obtain*2`
` ^hq(0)hl(t)hm(t)& (1). This is

easy. Equation~5.9! is to be used now withB5hlhm and
A5hq ,
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2@v l1vm#E
2`

`

dt^hq~0!hl~ t !hm~ t !&~1!

2( M 2 lk jE
2`

`

dt^hq~0!hk~ t !hj~ t !hm~ t !&~0!

2( M 2mk jE
2`

`

^hq~0!hk~ t !hj~ t !hl~ t !&~0!

1^hqhlhm&S
~1!50. ~5.13!

The expression for*2`
` dt^hq(0)hk(t)hj (t)hl(t)&

(0) is very
simple to calculate and the final equation obtained by
manding in Eq.~5.12! that (1/vq)(2) vanishes is

vq2nq12(
Mqlm@Mlmqfm1Mmlqf l #

v l1vm
12vq(

l ,m

3
Mqlm@Mlmqfm1Mmlqf l1Mqlmf lfm /fq#

@v l1vm#@v l1vm1vq#
50.

~5.14!

We see that the different fittings of the modelL0 to the
real evolution equation lead to two different equations t
can serve as candidates for a second equation, relatingvq
andfq . In fact, one could think of many criteria for fitting
L0 to L, which will lead of course to equations differen
from Eq. ~5.5! or ~5.14!. This may seem alarming, butL0 is
not to replaceL but just should serve as a reasonable sim
evolution operator to expand about. More importantly
show in the Appendix that these details or even the diff
ence introduced by ascribing say, orderM to all terms inL
2L0 are irrelevant. The small-q behavior offq and vq is
totally unaffected by these differences.

It will be noted that the series we develop is not that
the Feynman diagrams. The reason is that instead of
Dyson ‘‘S,’’ we have the input and output kernels, who
pattern appears at each order and is vital to the power
solution. It is possible to derive diagrammatics analogou
the Feynman diagrams, the details of which are in Refs.@8–
10#.

VI. ASYMPTOTIC POWER-LAW SOLUTION

In the following we will treat the specific equations~3.13!
and ~5.4!. This treatment will ensure, however, that if w
started, for example, from Eqs.~3.13! and ~5.14! the ob-
tained small-q behavior would not have changed. Equatio
~3.13! and ~5.5! can be written in the form

D02nq2fq2I 1~q!fq1I 2~q!50 ~6.1!

and

vq2nq22J~q!50, ~6.2!

where

I 1~q!5
2g2

~2p!d E ddl
lW•~qW 2 lW !

v l1vq2 l1vq

3@ lW•qW f l1~qW 2 lW !•qW fq2 l #, ~6.3!
-

t

e

-

f
he

w
to

s

I 2~q!5
2g2

~2p!d E ddl
@ lW•~qW 2 lW !#2

v l1vq2 l1vq
f lfq2 l , ~6.4!

and

J~q!5
2g2

~2p!d E ddl
lW•~qW 2 lW !

v l1vq2 l
@ lW•qW f l1~qW 2 lW !•qW fq2 l #.

~6.5!

We expect that for small enoughq, fq and vq are power
laws in q. Namely, there exists aq0 small enough such tha
for all uqu,q0 , fq andvq are adequately described by

fq5Aq2G ~6.6!

and

vq5Bqm. ~6.7!

We are interested in Eqs.~6.1! and ~6.2! for small q’s
only. The difficulty, however, is that the integrals involve
I 1(q), I 2(q), andJ(q), have contributions from largel ’s as
well as from smalll ’s. Our first task thus is to separate th
low momenta from the high momenta in the coupled integ
equations~6.1! and ~6.2!. We break up each of the integra
I (q) and J(q) into the sum of two contributions
I .(q),J.(q) and I ,(q),J,(q), corresponding to domain
of integration withu l̄ u.q0 and u l̄ u,q0 , respectively. By ex-
panding with respect toq and vq we obtain the leading
small-q behavior of theI .(q) andJ.(q),

I 1
.~q!5A1q21B1vqq21C1q4, ~6.8!

I 2
.~q!5A21B2vq1C2q2, ~6.9!

and

J.~q!5A3q2. ~6.10!

Retaining only the leading terms, Eqs.~6.1! and~6.2! reduce
now to

D01A22~n1A1!q2fq2I 1
,~q!fq1I 2

,~q!50
~6.11!

and

vq2~n1A3!q22J,~q!50. ~6.12!

The advantage of Eqs.~6.11! and~6.12! over Eqs.~6.1! and
~6.2! is that at the mere price of renormalizing some co
stants in both equations, we are left with the integralsI ,(q)
andJ,(q) that can be calculated explicitly given the simp
power laws~6.6! and ~6.7! for f l and v l that hold for u l̄ u
,q0 . In particular, each of these integrals is a power law
q with an exponent that depends only onG, m, and the di-
mensiond. The treatment of Eqs.~6.11! and~6.12! is carried
on by studying the various possibilities of different terms
dominate the equations at smallq.

The full details of that investigation are given in the A
pendix. Here we just quote the final results. We find tw
consistent possibilities. Ford.2 we find the possibilityG
5m52. This corresponds to a weak-coupling solutio
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which is also obtainable by a conventional expansion inM .
The second option is to have a strong-coupling solution
is characterized by the scaling relation@11#

d142G22m50 ~6.13!

and the additional equation that fixes the expone
F(G,m)50, where the functionF is given by

F~G,m!52E ddt
tW•~ ê2 tW !

@ tm1uê2 tWum11#

3@ tW•êt2G1~ ê2 tW !•êuê2 tWu2G#

1E ddt
@ tW•~ ê2 tW !#2

@ tm1uê2 tWum11#
t2Guê2 tWu2G,

~6.14!

whereê is an arbitrary fixed unit vector and the integration
over the wholetW space.

In one dimension it may be easily verified by direct i
spection thatF(2,m)50, regardless of the value ofm. So we
recover the exact resultG52 and from the scaling relation
we obtainm53/2.

In d52 we obtainm~G! from the scaling relation and
solve numerically the equation

F„G,m~G!…50. ~6.15!

The solution isG52.59, which is in good agreement wit
results obtained by numerical simulations@12–17#. The re-
sults of Bouchaud and Cates@18# and of Perlsman and
Schwartz@19# are also similar.

VII. HIGHER-ORDER EXPANSIONS

The results obtained so far are based on fitting a modeL0
to describe the true evolution operatorL, by expanding in
the difference betweenL and L0 to second order. It is im-
portant, however, to try to understand the behavior of te
obtained from higher-order expansions. The main reaso
no
o

e
m
o
th
th
r
s

is
at

ts

s
is

to check whether higher-order corrections may render
expansion inconsistent in an obvious way and to see whe
more information can be extracted by such corrections.
start by considering the weak-coupling solution, i.e., co
sider the cased.2, G52, andm52. In that caseI 1

,(q) is
proportional toq2, I 2

,(q) is a constant to leading order inq,
andJ(q) is proportional toq2. A direct check of Eqs.~6.11!
and ~6.12! indicates that indeed the solution isG5m52.

For the strong-coupling case we find that Eq.~6.11! be-
comes

D01A22A~n1A1!q22G

12
A2

B

g2

~2p!d F~G,m!qd1422G2m50 ~7.1!

and Eq.~6.12! reduces to

Bqm2~n1A3!q22
2Ag2

B~2p!d G~G,m!qd1422G2m50,

~7.2!

whereG(G,m) is given by

G~G,m!5E ddt
tW•~ ê2 tW !

@ tm1uê2 tWum#

3@ tW•êt2G1~ ê2 tW !•êuê2 tWu2G#. ~7.3!

As detailed in the Appendix, the two dominant terms in E
~7.2! are the first and last on the left-hand side of the eq
tion. Equation~7.1!, on the other hand, has only a sing
dominant term, which is the last one on the left-hand side
the equation. Therefore, the coefficient of that domin
power ofq,F(G,m) must vanish.

When going to higher-order terms in the same expans
we see that the terms that produce dominant terms in
2nth order, involven d-dimensional integrations, 2n M’s,
(n11) f’s, and (2n21) v denominators. Denoting tha
power ofq by an andu5d142G22m we obtain
an5 Hd1422r 2m1~n21!u
0

if d1422G2m1~n21!u,0
if d1422G2m1~n21!u>0. ~7.4!
g
er
way
t

ci-
the
For the weak-coupling solution~d.2, G52, andm52!, the
second possibility in Eq.~7.4! is encountered sinceu.0.
Therefore, the introduction of higher-order terms does
change the fact that the weak-coupling solution remains c
sistent.

The strong-coupling solution is more interesting. If w
had u,0, each higher-order correction would be more i
portant than the previous one. This would render the wh
expansion meaningless, as the underlying expectation
higher-order terms are less important is violated. If, on
other hand,u were larger than zero, higher-order terms a
less important, as expected, and the second-order term
Eqs.~7.1! and~7.2! would already give the exact result. Th
t
n-

-
le
at
e
e

in

cannot happen, however, since Eq.~7.2! then determines the
scaling relation that impliesu50. We see that the scalin
relationu50 plays a very important role when higher-ord
terms are considered. It controls the expansion in such a
that the most dominantq dependences arising from differen
orders of the expansion areidentical.
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APPENDIX: DETAILED ASYMPTOTIC SOLUTION

In this appendix we study the possible solutions of E
~6.11! and ~6.12!, namely, the possible values ofG and m.
First we consider theq dependence of the integralI 1

,(q),
I 2

,(q), andJ,(q). We find by transforming the variable o

integration fromlW to tW5 lW/uqu,

I 1
,~q!5

2g2

~2p!d

A

B
qd142G2mEq0 /q

ddt
tW•~ ê2 tW !

tm1uê2 tWum11

3@ tW•êt2G1~ ê2 tW !•êu tW2êu2G#, ~A1!

I 2
,~q!5

2g2

~2p!d

A2

B
qd1422G2mEq0 /q

ddt

3
@ tW•~ ê2 tW !#2

tm1uê2 tWum11
t2Guê2 tWu2G, ~A2!

and

J,~q!5
2g2

~2p!d

A

B
qd142G2mEq0 /q

ddt
tW•~ ê2 tW !

tm1uê2 tWum

3@ tW•êt2G1~ ê2 tW !•êuê2 tWu2G#, ~A3!

where*q0 /q means thatu t̄u is restricted belowq0 /q and ê is
an arbitrary fixed unit vector. The small-q dependence o
each of the integrals depends on whether or not it conve
when u t̄u is not restricted at all. We obtain

I 1
,~q!,J,~q!}H q2 for d122G2m.0

q2 ln
q0

q
for d122G2m50

qd142G2m for d122G2m,0
~A4!

and

I 2
,~q!}H const for d1422G2m.0

const3 ln
q0

q
for d1422G2m50

qd1422G2m for d1422G2m,0.
~A5!

We consider now the upper-right quadrant of the~G,m!
plane, where a solution may be expected. The linesd12
2G2m50 andd1422G2m50 divide the quadrant into
four sectors. We investigate next each sector separate
decide whether or not a solution can exist there. Sectiona is
defined byd122G2m.0 andd1422G2m.0. In that
sector Eqs.~6.11! and ~6.12! reduce to

D01A21A282~n1A11A18!Aq22G50 ~A6!

and
.

es

to

Bqm2~n1A31A38!q250. ~A7!

The conclusion isG52 andm52. By definition of the
sectors it follows that this can happen only ford.2. In sec-
tion b, d122G2m.0 andd1422G2m,0. In this sec-
tor Eq. ~A6! is replaced by

D01A22~n1A11A18!Aq22G1C2qd1422G2m50.
~A8!

The last term on the left-hand side of Eq.~A8! is negligible
compared to the second term because of the defining co
tion d122G2m.0. It follows thatG52. This implies the
contradictionm.d andm,d and at the same time Eq.~A7!
yields alsom52. ~Points on the boundaries of the secto
will be discussed separately later.! Sectiong is the section
where d122G2m,0 and d1422G2m.0. Equation
~A6! is replaced by

D01A22~n1A1!Aq22G1C8qd1422G2m50. ~A9!

The two equations defining the sector imply that the dom
nant term on the left-hand side of the equation is the cons
D01A2 . ~The alternative isG52, which leads to the contra
diction m.d andm,d.! A necessary condition for the ex
istence of a solution isD01A250, but this is impossible
becauseD0 andA2 are both positive definite.

Section d is defined by d122G2m,0 and
d1422G2m,0. In this sector Eqs.~6.11! and ~6.12! take
the form

D01A22~n1A1!Aq22G1
2g2

~2p!d

A2

B
F~G,m!d1422G2m

50 ~A10!

and

Bqm2~n1A3!q22
2g2

~2p!d

A

B
G~G,m!qd1422G2m50,

~A11!

whereF(G,m) is defined by Eq.~6.14! andG(G,m) by Eq.
~7.3!. Consider first Eq.~A10!. The two conditions defining
the sector imply that the two first terms on the left-hand s
are negligible compared to the last term. Therefore, if a
lution exists in this sector we must have

F~G,m!50. ~A12!

In Eq. ~A11! it is clear that theq2 term is negligible com-
pared to theqd1422G2m term. Two possibilities seem to
arise now. Either the last term on the right-hand side of
equation dominates the two other terms and then we m
haveG(G,m)50 or the last and first terms are proportion
to the same power ofq, leading to the scaling relationd
142G22m50. As discussed in the previous section t
first possibility, which impliesd142G22m,0, is incon-
sistent with the whole idea of an expansion, where high
order terms are not expected to be more violent than low
order ones.

Points on the boundaries of the sectors are not poss
solutions, basically because of the logarithmic factors t
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make power-law solutions or even solutions of the formf0
}q2G@ ln(q0 /q)#G1 and v0}qm@ ln(q0 /q)#m1 inconsistent. The
final conclusion is that only two possibilities exist. Ford
.2 we find that the weak-coupling solution is possible. W
find also a strong-coupling solution whenever the two eq
tions d142G22m50 andF(G,m)50 have a solution.

How does our discussion change if we use the fitting
the characteristic frequency~5.14! instead of the excitation
energy ~5.4!? Equation~6.1! is unchanged, but a term i
added to Eq.~6.2!. After separating high from low mo
menta we recover Eq.~6.11! and Eq.~6.12! changes into

~11c!vq2~n1A3!q22J,~q!2k1
,~q!vq1k2

,~q!vqfq
21

50, ~A13!

whereK1
,(q) is given by

K1
,~q!5

2g2

~2p!d

A

B2
qd142G22mEq0 /q

ddt

3
tW•~ ê2 tW !@ t̂•êt2G1~ ê2 tW !•êuê2 tWu2G#

@ tm1uê2 tWum#@ tm1uê2 tWum11#
~A14!

and
A

e

s

-

f

K2
,~q!5

2g2

~2p!d

A2

B2
qd1422G22mEq0 /q

ddt

@ tW•~ ê2 tW !#2t2Guê2 tWu2G

@ tm1uê2 tWum#@ tm1uê2 tWum11#
. ~A15!

A direct check of Eq.~A13! shows that the two last term
that were added to the left-hand side of the equation can
dominate over theqm term. ~In the case thatd142G22m
50, they have the sameq dependence.! Therefore, we obtain
exactly the same solution obtained for the caseK1

,(q)
5K2

,(q)50 discussed before.
If we use a different expansion, by ascribing, say,M to all

terms inL2L0 , the equations are changed by adding fact
of q2/vq to the nonintegral terms as obtained in Ref.@2#. The
result is again the same. A weak-coupling solution may e
only for d.2 and the strong-coupling solution is determin
by solving d142G22m50 and F(G,m)50 simulta-
neously.

When considering integral equations of the form d
cussed above, it is usually expected that a power coun
solution may be obtained by equating the power law aris
from the integral part of the equation to some other term t
is also a power law inq. Indeed, this is sometimes the ca
@20#. In our case the strong-coupling solution is of a differe
nature and the solution of a transcendental equation is
quired to fix the exponent.
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