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Peierls-Boltzmann equation for ballistic deposition
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We consider nonlinear stochastic field equations. Going over to a Fokker-Planck description, we construct a
self-consistent expansion around a model evolution equation. In second order the equation for the two-point
function resembles the Peierls-Boltzmann equation for the average number of phonons, but involves also the
unknown characteristic frequency function. Within the same expansion we obtain an equation for that function
too. The two coupled equations are studied specifically for the case of ballistic deposition. We show how to
obtain the exact asymptotic solution of the two coupled nonlinear integral equations obtained in second order.
Higher orders are also discuss¢f81063-651X98)03005-0

PACS numbes): 81.15.L.m

I. INTRODUCTION namical arguments are used in Sec. V to derive an equation
for the characteristic frequency. The resultant two coupled
Many interesting phenomena in condensed-matter physiosonlinear integral equations for the static two-point function
are described by nonlinear equations driven by randon&nd the characteristic frequency are discussed in Sec. VI. We
forces. A long list of examples includes turbulence, criticalshow how to obtain the exact exponents describing the
dynamics, and the dynamics of interacting polymers. Many@symptotic smalfy behavior of the two functions. Higher-
of these examples are difficult, not only because of theirder expansions are considered in Sec. VII. It is shown that
nonlinearity, but for other problems such as convergence dif2 Strong-coupling consistent expansion is possible only if a
ficulties in turbulence and topological difficulties in poly- certain scaling relation between the exponents characterizing
mers. However, the problem of nonlinear deposition theorythe two-point function and the characteristic frequency is
as described by the Kardar-Parisi-Zhaigpz) [1] equation, ~obeyed. Itis very interesting that this scaling relation is iden-
is a benign example, showing fully nonlinear behavior, buttical to the one that follows from the dynamical arguments.
without other difficulties. It has a quadratic nonlinearity, The construction of the smatj-asymptotic solution is de-
which leads to manageable mathematics. This feature bdailed in the Appendix.
longs to physical systems that are dissipative; Hamiltonian
systems are notably more difficult. In a previous publication Il. NONLINEAR EQUATIONS
we gave a brief description of a self-consistent expansion ) . .
that allowed a direct calculation of the indices that charac-, W€ Study afielth(r,t), hy(t), orhy, in progressive Fou-
terize the correlation functions of that equatif®. The rier transforms, which satisfies the equation
method is based on going over from the KPZ equation in
Langevin form to a Fokker-Planck form and constructing a (7—tk— thk+z Mkjlhjhﬁ,Z Njimhihihm++--= 7,
self-consistent expansion of the distribution for the field con- Il LLm
cerned and hence the required observables. The method pro- 2.)

duced useful equations at second order of nonlinear couplqﬁhere usuallyM ,N havek+j+1=0, k+j+I+m=0, etc
integral equations, which can be solved exactly in theThe variabler, is noise driving the equation and usually has

asymptotic limit to yield exponents governing the steady-,[h e form

state behavior and the time evolution, although this latter

problem is not dealt with in detail in this paper. The present (m)=0, 2.2
article gives a detailed explanation of the method not only to

show how and why it works for the KPZ equation, but also (p(r D) p(r' t))y=2D(r—r")8(t—t"), 2.3

to show how other systems can be studied.
The article is organized as follows. In Sec. Il we obtainor in the simplest case
the Fokker-Planck equation derived from a generic

Langevin-like field equation. The idea of choosing a model 2DgS(r—r")o(t—t"). (2.9
system that is soluble and approximates the nonsoluble sys- _ _ _
tem, is described in Sec. lll. A second-order expansiorAn example is the KPZ equation for a heigt

around such a model is used in Sec. IV to obtain a Peierls- sh
Boltzmann equation for the static two-point function in terms 2 2_

) L ) ——vV°h+g(Vh) = 5(r,t). 2.
of an undetermined characteristic frequency function. Dy- at g(Vh)==n(r.t 29

1063-651X/98/5(5)/5730(10)/$15.00 57 5730 © 1998 The American Physical Society



57 PEIERLS-BOLTZMANN EQUATION FOR BALLISTLC.. .. 5731

Equation(2.2) means that the heighit is measured relative in any number of dimensions.

to the mean. The linear equation In general, it is difficult to envisage circumstances when
this will not be the case. Even when, in the case of fluid
dh V2h— 26 turbulence, there are well-established long-lived fluctuations,

Fral g 29 overa longer period again one expects E3j14 to hold.

Thus our problem is now reduced to
already contains much interesting phydig$ but when the
nonlinear term is included the correlation function LP=0. (219

(h(r,t)h(r’t")y=¢(r—r’ t—t") 2.7 In the next section we will propose a systematic approach
to a solution and in Sec. IV give details of the solution.
has a composite behavior, which leads to the breakdowen of

space into regions characterized by the different behavior of IIl. MODELS AND EXPANSIONS
its Fourier transform. At lowg it exhibits power-law behav-
ior. In Fourier variables the KPZ equation is In the following we describe the motivation for our self-

consistent expansion. Suppose the nonlinear term iZEg).

ahyg was modeled as if it were an addition tpi.e., suppose
7+quh +J_—E I-(q—hihg_=74(1), (2.8
<2 Mgimhi(Dhin(t) 2 Mqr.,m,h|,<0>hmr<0>>
i.e., I,m ey
— qu, (29) = quﬁ(t) 5qqr . (31)
Then Eq.(2.13 would be modeled by
9
Mqlm: 5q+|+m(|'m) = (2.10 JP (9 07
Q _
Here () is the volume of the system and passing to lathe (3.2
the Fourier components run into the continuum. From Eg.
(2.1) we can pass to Liouville’s equation an equation that is soluble, being a version of Hermite's
equation. The full solution requires, of courg®,, but this
aP 2 d E _ can be done self-consistently. This is not the most general
E+ 5 oh_, vghg+ “ Maimhihm+ 74| P=0, soluble form, for when problems in, say, plasma physics are

(2.11)  resolved by the derivation of a Fokker Planck equatisee
e.g.,[5]) the form derivedfor the velocity distributiorP(v)
whereP is the probability thah,(t) has the valud: in that casgis

JP d
WJHE,- Djj(v) 5~ P+2 o M,, (v)v;P=0,

P fq[ 8(hqg(t)—hg). (2.12 . 2
3.3
When 7 satisfies Eq(2.4), i.e., fluctuates locally in time, the
average ofP over 7 satisfies where u is called the dynamic friction. We use a somewhat
similar form as astarting pointfor the derivation of a self-
d E d d h 2 hh consistent model of Eq2.13),
at (P T dh_4 Doq ath”jq -t & Mamhiim (P) P

KA VR

gt G oh_g b

J P
+ wgh—q|P=—-+LoP=0.

_7 P)+L{(P)=0 2.1 ! 5h
_E< >+ < >_ : (3 (3_4)
This can eas”y be shown by expand|ng EZ]_]_:D in i and Since this is a Hermite equation, it is soluble not Only in the
then averaging term by term, resuming, or by many othehomogeneous form where
methods: It is a standard result.

Hencefo_rth(P) will be referred to e_lsP. An exact proof _ Po=N ex;% _%2 hq(ﬁqlhq), 3.5
has been given that a steady state exists for the KPZ equation
(in the caseDoy=Dy) in one dimensionf4]. (The steady

state is a simple Gaussiann higher dimensions the exis- Po . Dy
. . X —=0 with ¢,=—, (3.6
tence of a steady state follows from numerical simulations. at 1 wq
Therefore, we assume in this paper without proof that there _
exists a steady-state solution but also as a Green function
aP G , ,
—=0 (2.14 —r +LG= H 8(hg—hg) s(t—t"). (3.7
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So M. M. b
f (“:_—Q_JT(!)Iﬁ(qujH)ddjddl
G=G(---hghgh_gh’ ... t—t) (3.9 R
My M

is available for expansions. In fact, althoughis completely +f w 8(g+j+1)ddjdd
known, it turns out that only properties of the first few eigen- @ @@
functions will ever be needed, so we need not descalina Mg Mg bgcb:
detal, | BrBuaPe%) g +1)a%d + Dog- v

What we plan to do then is to study first the time- Qo @@l
independent equation =0, (3.13

LP=0 (3.9  where
by modeling its solution as an expansion around the solution - 20
of Mgim= 2m)e Mgim (3.14
LoPo=0. (3.10

and o is obtained in Sec. V. The two terms wiiy, are

equal, but it is so written to show the symmetry. The equa-

tion for w is derived in Sec. V below and is of a similar level

of complexity. There is some difference in the signs com-
red to the Peierls-Boltzmann equation. In the PB equation
e two nonlinear terms are positive and a natural minus

ppears between them as in the classic Boltzmann equation.

In our equation(3.13 the termMéj,Js clearly positive, but

the signs of the other terms such Ms;; M, depend org,

We have to find two equations for the functiobg and w,
that in some sense will male, the best model of its kind
describingL . It will turn out that the full details of one of the
equations are not necessary and different candidates for th
equation lead for smadf to the same scaling relation relating
wq and Dy (or ¢q). The scaling relation for the KPZ equa-
tion, which holds at all orders of our expansion, for snegll

is
j, andl.
wéaqd+4¢q_ (3.11) To derive Eq.(3.13 we write Eq.(3.9) as
. . . . L d J
It is natural at this point to ask if problems of this kind LP= D.—+wh -+ M.hh
have been studied in the literature before and the Fokker % oh_q| Taohg A Izr:'w qlm T m
Planck equation for plasni&], mentioned above, is such an
example. Another is the nonlinear interaction of phonons +(Dgg—D )i+(v —w)h_4|P=0 (3.1
with an interaction very much like that of the KPZ equation, 4 79 oh, 4 TATTA

but in a Schrdinger equation for the phonon fiefohstead of

Fokker-Planck one in our casgs]. That is a fundamentally and expand® aboutP, defined by

simpler problem because the phonons are well approximated

by the linear part of the equation except when they scatter, Lp _2
oro—

1%
D —+wqhq} Po=0, (3.16

which comes from the nonlinear part. Peierls derived a 7 oh_g q dhg

Boltzmann equation governing the number of phonops

which looks like ie.,

Ny : 3: , 3.

— ka(k,j,Dngn;d®j— | ka(k,j,1)nin;d*j =sources, Po=N exp —3> heh_q/éq|, (3.17
(3.12

whereN is the normalization yielding P,=1 and

representing the annihilation of a phonkrwhen it meets a
phononj to form a phonon (I +k+j=0), with kernelK,
and the creation of & by the collision ofj andl via K. f hgh—gPo{h}Dh= . 313

We expect to find, in analogy to this Peierls-Boltzmann
(PB) equation, that the steady state of deposition is given byreaders who are not interested in the technical derivation of
Jr1(K,j,1) b — S ka(K,],1) b+ vk? b —Dy=0, but un-  Eq. (3.13 and in the derivation of the equation farin Eq.
like the PB equation where, as in the classic Boltzmann5.4) but only in their solution can jump to Sec. VI, where
equation, the kernelg; and «, can be calculated from the the power-law solutions are derived, basically by showing
linear parts of the equation, in the KPZ equation the kernelshat the power law fofj)q and consequently fqbq will solve
are themselves part of the calculation, for at lewalues the  Eq. (3.13 for smallq.
dynamics is dominated by the nonlinear integral terms and
not by therV?h and external noise parts. The actual kernels
are quite reasonable functions expressed in terms of the char-
acteristicg-dependent frequenay, . In terms of thew's and We are interested in average quantities such as the two-
the inputD, our equation takes the form point function

IV. EXPANSION OF THE TWO-POINT FUNCTION
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(-~ [ oP O @ (FY=(F)ot (F)u+ (Pt (4.9
where(F); is f[FP;Dh. We also denote

In general, Eq(2.15 can be used to obtain a hierarchy of N

equations relatingn-point functions to (+1)-point func-

tigns. This hierarf:nhf/) will be used to dgrive)E?G..ls'). The <F>(n):i:20 (F)i- (4.10
basic step in obtaining the hierarchy is to note that by mul-

tiplying Eq. (2.19 by some function of the fields thatis  Consider first Eq(4.4). We are interested ithhphg)®. It
well behaved and integrating by parts we obtain the generag obtained from

relation
. . [w+w,+ a)q]<h|hmhq>(1)
; D0P< ahp&h—p> - Vp< h*p ah_p> —[n+vnt Vqgm W=~ Wm™ wq]<hlhmhq>(0)
gF \ = 2 My hghiphg)©
_p;m Mpim hlhmm =0. (4.2 oy

+M _pirme{hyrhy b )©
Thus, if we choosé = 3hsh_,, we obtain i P i)
+[M,q|rmr<h|/hmrh|hm>(o)]:0. (411)

DOq_Vq<hqh—q>_|’Em Magim(hihmhg) =0, (4.3 By definition of Py, (hjhyphe)®=0 and the required four-
point functions(hhhh)(® are easily calculated.
and if we takeF =h,h,h, with indices such that the sum of The final result is

any two is not zero, we obtain L
<hlhmhq>( )=~ Z[Mlmq¢m¢q+ Mmlqd’l (;bq
_[Vq+ v+ Vm]<hlhmhq>_ 2 [M_y 'm’<hl'hm’hmhq> + Mqlm¢| Pmll[w+ ont wq]- (4.12
1",m’

_ [In Eq. (4.12 the symmetry in the two last indices bf and
M i (i ) M g (e im) 1=0, "o o symmetry in the indices is use&quation
(4.4 (4.3, when taken to first order, yields

and this goes on.

This hierarchy is exact and we are interested in obtaining, Dg— wg{hghg)1— 2 Maim{hghim)o=0, (4.13
say, the two-point function in an expansion aroud If we
write ie.,
P=Po+P,+Py+-- (4.5 (hghg)P'= . (4.14

and ascribe td; the orderM, to P, the orderM?, and so  The same equation considered to second order gives
on, and within Eq(3.15 we ascribe ordeM? to (Do— D)

and (v— w), we obtain the following equations in schematic Dy~ wq(hgh_g)? +(Dog—Dg) + (wg—v¢){hgh_g)V
form to determineP,,P,, etc.

(1) _
LoPo=0, 4.6 +§ M gim( Nihmhg) Y =0. (4.19
_d We require now that within our approximatidgh_ o)
LoP1== g5 MhhPo, @n  _ bq, namely,(hq—h_ )@= ¢, . Using the expression ob-
tained for (hgh_o)® and (hjhphe)™®, Eq. (3.13 is ob-
d tained.
LOPZZ_% MhhP, It is interesting to consider also the expansion for the

distribution functionP. In order to obtain a structure familiar
D—D Py 4 hp 48 from quantum field theory, we apply a similarity transforma-
= 7h (Do D) —== =0 (v—w)hPy, 48 tionto all the operatorh, andIl,=d/dh,. The transformed

operatorA is given in terms of the original operatér by
etc.[The way we attached different ordersMf to different

parts ofL — Ly may look arbitrary. In Ref{2] we attached to r 1 D hoh_p A 1 > hph_p,
all the parts ofL — L, orderM. The equation obtained there =&XHy b, eXQ— 2 by |
is slightly different from Eq.(3.13, but that difference has (4.16

no bearing on the smatj-behavior of the two-point function,

as will become evident latdThe expansion of the probabil- I.€.,

ity distribution P implies a corresponding expansion for any -

average hq=hq (4.1
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and G
2 quqnq|Sz>+2 Mgim —F—— s 7 q(m+n)

=TI 1h-q 4.1
a= T2 Ty (4.18 T 1
X (mt nlm)|S1) — 2 (Dog—D ¢ n9m" g
We define now “excitation” creation and destruction opera-
tors 7} and », : ;
+% (vq— wg) 7 1g+ nq)} |0)=0. (4.26
77q 2\/— \/¢Tqu, (4.19 |S,) has the contribution of states with two, four, and six
excitations. Of special interest are the states of two excita-
tions. Clearly, the momenta of the two must be paired. De-
he+ \/_H, (420  noting that part byS,)'*), we find
Nq= 2\/— d’q

1
(2) = —
In terms of these operators, which obey the usual Bose comJ82> - [ % (Doq bq Vq) / 209
mutation relations[ 74, 7,]1=[7¢,7,]=0 and [7q,7}]

=84, the equation for steady stat®/st=0 is transformed D¢
intoqp ? d +22 Mqlm(Mqlm bq erlV|Iqm¢’m
> wq”]é’?q"" > MqlmM ntq +Mmql¢l)/[qu(“’q+wl+“’m)]]”q” q/0)-
q q,l,m \/Xq
(4.2
T oy _
X(mt ) Gt 7-m) zq: (Dog—Dq) Equation(3.13, which ensures that the correlati¢hyhg)

calculated to second order is identicaldg, implies at once
1, ; : B that|S,)(? vanishes identically.
ng 77q’7*q+§q: (vq=wg) mg( g+ n2g) 19)=0, Equation(3.13 involves two unknown functiong, and
wq. In order to obtaing, we need another equation relating
(4.2)  the two.

where|S) is the “true ground state.” OnckS) is obtained, a
steady-state average of any functioAabf the hy's is given
by We suggest thap, andw, must be chosen in such a way
thatL, is the best model of its kind describing the true time
. evolution operatoL.. We have already made one choice by
f PA{hG}Dh=(0|A{hG}|S), (4.22 deciding that(hyh,) calculated to second order be identical
to ¢4. The other natural choice involvey:sq Sincel is a
where|0) is the vacuum state defined by,|0)=0 forallq.  very 5|mple evolution operator, it is easily verified that is
The function|S) is expanded now in an expansion corre-the inverse lifetime associated with the magleln technical

V. DYNAMIC ARGUMENTS

sponding to the expansion &f, termsw, as a function ofj is the single excitation spectrum
of the evolution operator-L,, obtained by the similarity
1S)=[So) +[S) +1S2) +- - . (423 {ransformation(4.16 from —Lg, namely,Swqn}7,. One

possible way of fittingLy to L is to identify o, with the
value of its perturbed counterpafiWe will see later that
1S0)=|0) 4.2 there are many ways of obtaining an equation dgr, but
certainly fitting the “single excitation” spectra dfy andL
and seems to be a reasonable proceduret |,) be the eigen-
state ofL with momentumq that is obtained perturbatively
M gim Vb1 v/ from | 4) (@)= 5{|0). We expand

mO (4.25
+w|+wm]\/¢Tq 7] | > |‘/’q>:|‘r/’q>(0)+|'pq>(l)+|¢’q>(2)+'“ (5.1

Clearly,

|81>=Z

|Sp) is the “unperturbed ground state” an8,) is a function  and the associated eigenvaliig is expanded

summing with the appropriate weights the states where the

modesq, |, andm have gone into the first excited staf Be=o + B+ B+ (5.2
deriving Eq.(4.25 two properties oM, that hold for the —0)_ _ " ()

KPZ equation were use 4jq=M _q _| _yn andMgq,=0 if where, clearlyw,’= wq. Thg calculatlon oby;’ anday is

any of the indices vanish, recajt-1 +m=0.] a stralghtforward perturbation expansion that takes into ac-

The equation fotS,) is count that some terms in are ordefM and some are order
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M?2. The calculation is quite similar to that of the true ground J 3°B(t)
state|S) presented in Sec. IV. e (A(0)B(t))= >, Dog| A(0) hah
We find a -
aB(t)
> <A(0)h —>
=0 (5.3 I 4 h_q
aB(t)
and - Mq|m<A(0)h|hm T_q>
+ 8(t)(AB)g, (5.8

Mlmq¢m+ Mmlq¢l

o +ow,

B =vq—wq—22 Mgim . (5.9 _ o

where the last term on the right-hand side arises due to the

arbitrary choice(A(0)B(t))=0 for t<0, i.e., it serves to
where as in the derivation of E¢4.25 we have used the introduce the initial conditions. Since the expressiondgr
fact that Mg ;=0 and some symmetry properties of mt_roducgd in Eq(5.7) involves mtggraﬂoq from zero to In-
the kernel M that hold for the KPZ equatior(e.g. finity, which can be replaced by integration fromee to oo

qlm ’ _

Mgm=M _q 1 -m and Mgm=Mgm). Equation (5.4 was _[recall that we qhosehq(O)h_q(t»—O for t<0], we use the
originally derived by Herring in a different contejd]. Note ~ integrated version of Eq5.8),
that expressiofi3.13 contains threev's and(5.4) two. If we

require that the eigenvalue, is unchanged, we obtain as a w 9?B(1)
second equation relating and o 2 DOqJ dt< A(0) W>
q —® q?ll-q
o dB(t)
M +M _ 7
v 0q—23 Mo |mqilm+w miaf _ o 5.5 Eq) vq xdt< A0)h_q(t) —— >
m

» 0B
Equation(5.5) is based on the requirement that the mddgl a E Mq'mfxdt< A (D hn(1) ah_gq (t)>
should be fitted to the real evolution operator by fitting the
“excitation spectrum” of the “perturbed singly excited +(AB)s=0, (5.9

states.” In the following, we describe the different “charac-

teristic frequency” fitting of the model, which was used in \yhere the term arising from the time derivative is zero be-

Ref.[2]. . _causg(A(0)B(t)) is zero for negative time and must tend to
Consider a system in steady state. We can measure at i@ for positivet tending to infinity.

zero an observablé and after timet has elapsed we can

X P W We expand
measure another observalle This leads to the definition of
a correlation
1 1\© 1 (1) 1 (2)
= = | = +| = + | = +"', (51@
Wq \Wq @q @q

(AOB)= [ PN AP 0P 1)
where clearly (ﬂ,‘q)(O):l/wq_ Choosing A=h,, and B

xB{hg”}Dhg "D, (56 =h_,, itis easily verified that
where P{h{M} is the steady-state distribution and 1\
P{hY h{?) t} is the distribution of thén!?)'s obtained after =] =0 (517
q g > q Wq

time t when the initial condition at time zero [H&(hgz)
—h{Y). The characteristic frequency associated Withis

customarily defined by Second-order calculation yields

1\®@ Mym (=
—wq(w:) = |” tngomnw)at

1 [5(hg(O)h_g(t))dt
= q

w:q <hqh*CI>S ,

(5.7

1\©
) =0. (5.12

—(vg—wg)| =
where in the denominator the subscriptdenotes steady- a q)(“’q
state averaging.
Using the equation of motiof2.13 for P{h{" ,h?),t},  The next step is to obtaifi”..(hq(0)h(t)hy(t))™). This is
multiplying by P{h{V}A{h{IB{h{?}, integrating over easy. Equatior(5.9) is to be used now witi8=h;h,, and
h{”, and integrating by parts ovéx?), we obtain A=hy,
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_ N (1) 29 [1-(G-D]?
[wl+wm]J_wdt<hq(0)hl(t)hm(t)> l2(0)= 7 53 J del m@gbq,l, (6.4
-2 Moy J_:dt<hq(0>hk<t>h,-<t>hm<t>><°) and
2¢” r@-n .. . o

- J(q)= dd| I —1 -
_2 Mfmkjf <hq(o)hk(t)hj(t)hl(t)>(0) (a) (27T)d J' w|+wq_|[ qé+(g—1) q¢q 1]

o (6.5
+(hghjh,)§"=0. (513  We expect that for small enougly ¢, and w, are power

_ . o - laws inq. Namely, there exists g, small enough such that
The expression fof ”..dt(ha(0)hi(t)hj(t) (1)) is very  for all |g|<q,, ¢, andw, are adequately described by
simple to calculate and the final equation obtained by de-

manding in Eq(5.12) that (1) ® vanishes is pq=Aq " (6.9
M M +M and
wq— Vq+22 qlm[ I;n)qu mlqd’l] +2wq2
|+ o I,m wqa=Bg". (6.7
xMq'm[M'mq('berMm'q¢'+Mq'm¢'¢m/¢q] =0. We are interested in Eq$6.1) and (6.2) for small g's
(ot op]lw+ont og] only. The difficulty, however, is that the integrals involved,

(5.14 1.(q), I>(g), andJ(q), have_ contributions_from largés as
well as from small’s. Our first task thus is to separate the

We see that the different fittings of the modgj to the  low momenta from the high momenta in the coupled integral
real evolution equation lead to two different equations thatequationg6.1) and(6.2). We break up each of the integrals
can serve as candidates for a second equation, relaging 1(q) and J(q) into the sum of two contributions
and ¢ . In fact, one could think of many criteria for fitting 17(q),J”(q) and 1=(q),J~(q), corresponding to domains
Lo to L, which will lead of course to equations different of integration with|l|>q, and|l|<qq, respectively. By ex-
from Eq. (5.5 or (5.14. This may seem alarming, bub is  panding with respect t@ and v, we obtain the leading
not to replace. but just should serve as a reasonable simpleémallq behavior of the = (q) andJ”(q),
evolution operator to expand about. More importantly we

show in the Appendix that these details or even the differ- 17(9)=A10%+ B1w,g°+C1q*%, (6.9
ence introduced by ascribing say, ordérto all terms inL
—Lg are irrelevant. The smatj-behavior of ¢4 and v, is 15(q)=A,+ Bowg+ C,02, (6.9

totally unaffected by these differences.

It will be noted that the series we develop is not that ofand
the Feynman diagrams. The reason is that instead of the N 2
Dyson “3,” we have the input and output kernels, whose J7(q)=Az0". (6.10
pattern appears at each order and is vital to the power-la\ﬁ
solution. It is possible to derive diagrammatics analogous t
the Feynman diagrams, the details of which are in &s.

10]. Do+As— (v+A1)G2hq— 17 () bgt15(q)=0
(6.11)

etaining only the leading terms, Ed6.1) and(6.2) reduce
Pow to

VI. ASYMPTOTIC POWER-LAW SOLUTION
and
In the following we will treat the specific equatiof3.13

and (5.4). This treatment will ensure, however, that if we wq— (v+A3)g*=J<(q)=0. (6.12
started, for example, from Eq$3.13 and (5.14 the ob-
tained smallg behavior would not have changed. EquationsThe advantage of Eq$6.11) and(6.12 over Egs.(6.1) and

(3.13 and(5.5) can be written in the form (6.2 is that at the mere price of renormalizing some con-
) stants in both equations, we are left with the integtalgn)
Do—va°¢q—11(q) pqt12(q)=0 (6.)  andJ=(q) that can be calculated explicitly given the simple

power laws(6.6) and (6.7) for ¢, and w, that hold for|l|

<(o- In particular, each of these integrals is a power law in

wq—vg*—J(q)=0, (6.2  Q with an exponent that depends only bnu, and the di-

mensiond. The treatment of Eq$6.11) and(6.12) is carried
where on by studying the various possibilities of different terms to

L dominate the equations at smqll

B 2g° q  @=1 The full details of that investigation are given in the Ap-
l1(q)= (21)d d W+ 0 T 0q pendix. Here we just quote the final results. We find two

) R consistent possibilities. Fat>2 we find the possibilityl”
X[I-q¢+(q— I)-ﬁcpq,,], (6.3 =u=2. This corresponds to a weak-coupling solution,

and
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which is also obtainable by a conventional expansioMin  to check whether higher-order corrections may render the
The second option is to have a strong-coupling solution thagéxpansion inconsistent in an obvious way and to see whether

is characterized by the scaling relatigii] more information can be extracted by such corrections. We
start by considering the weak-coupling solution, i.e., con-
d+4-I-2u=0 (6.13 sider the cas@>2, I'=2, andu=2. In that casd ;(q) is

groportional tog?, 15 (q) is a constant to leading order @p
andJ(q) is proportional tog?. A direct check of Eqs(6.11)
and(6.12 indicates that indeed the solutionlis= u=2.

and the additional equation that fixes the exponent
F(T", ) =0, where the functiorr is given by

t.(e—1) For the strong-coupling case we find that £6.11) be-
F(F,,u)z—f d%t —————— comes
[t“+|e—t]*+1]
x[t-et '+ (@—1)-ele—t] "] DotA,—A(v+A)g> T
(£ (2~ ))° A8 L
+J At ———————t et T, T28 2 T =0 (7.1
[t“+|e—f|*+1]

(6.14  and Eq.(6.12 reduces to

2

wheree is an arbitrary fixed unit vector and the integration is u , 2Ag d+d4—20—pu_
over the wholef space. BY*~(v+As)Q"~ gz ya CIwa =0,
In one dimension it may be easily verified by direct in- (7.2

spection thaF (2,u) =0, regardless of the value pf So we
recover the exact result=2 and from the scaling relation whereG(I',u) is given by
we obtainu=3/2.

In d=2 we obtainu(I') from the scaling relation and &(r )‘f " t.(e—1
solve numerically the equation WM [t +|o—t]*]
F(T,u(I'))=0. (6.19

x[t-et""+(@—0)-ee—f 1. (7.3
The solution isI'=2.59, which is in good agreement with o ) i )
results obtained by numerical simulatiofi2—17. The re- AS detailed in the Appendix, the two dominant terms in Eq.

sults of Bouchaud and Catdd8] and of Perlsman and (7.2 are the first and last on the left-hand side of the equa-
Schwartz[19] are also similar. tion. Equation(7.1), on the other hand, has only a single

dominant term, which is the last one on the left-hand side of
the equation. Therefore, the coefficient of that dominant
power ofq,F(I",x) must vanish.

The results obtained so far are based on fitting a mbglel When going to higher-order terms in the same expansion,
to describe the true evolution operator by expanding in we see that the terms that produce dominant terms in the
the difference betweeh andL, to second order. It is im- 2nth order, involven d-dimensional integrations,2 M’s,
portant, however, to try to understand the behavior of termgn+1) ¢'s, and (2—1) » denominators. Denoting that
obtained from higher-order expansions. The main reason igower ofq by a, and6=d+4—I"—2u we obtain

VIl. HIGHER-ORDER EXPANSIONS

_jd+4=2r—p+(n-1)0 if d+4-2I'—p+(n—-1)6<0

=g if d+4— 2T+ (n—1)6=0" 74

For the weak-coupling solutiofd>2, I'=2, andu=2), the  cannot happen, however, since Eg.2) then determines the
second possibility in Eq(7.4) is encountered sincé>0.  scaling relation that implie®=0. We see that the scaling
Therefore, the introduction of higher-order terms does notelation =0 plays a very important role when higher-order
change the fact that the weak-coupling solution remains conerms are considered. It controls the expansion in such a way

sistent. _ o ) . that the most dominarg dependences arising from different
The strong-coupling solution is more interesting. If we grders of the expansion argentical

had <0, each higher-order correction would be more im-
portant than the previous one. This would render the whole
expansion meaningless, as the underlying expectation that
higher-order terms are less important is violated. If, on the
other hand,@ were larger than zero, higher-order terms are This research was supported in part by the National Sci-
less important, as expected, and the second-order terms @mce Foundation under Grant No. PHY 94-07194 and by the
Egs.(7.1) and(7.2) would already give the exact result. This German Israeli Foundation.
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APPENDIX: DETAILED ASYMPTOTIC SOLUTION

In this appendix we study the possible solutions of Egs.

(6.11) and (6.12, namely, the possible values bf and .
First we consider the dependence of the integréf (q),

15(q), andJ=<(q). We find by transforming the variable of

integration fromi to t=1/|q|,

2 a—

(q) = 29 —qd+4_F_MJqO/qddt f.fe )
(2m)9 B th+e—f]*+1
X[f-&t~ T +(e—1)-8/t—8 '], (A1)

29% A? do’d
|< — o d+4—2F—,uf ddt
2(a) (2m° B q
f-(e—1)]? -
[S—)]t—F|e—f|—F, (A2)
th+le—t]*+1
and
5 R
J<(Q): ZQ_éqd+4—F—quO/qddtM
(2mB t“+|e— |~
x[t-ét '+(@—f)-ele—t ", (A3)

where [%/9 means thalt] is restricted belowgy/q ande is
an arbitrary fixed unit vector. The smajl-dependence of

each of the integrals depends on whether or not it convergesp i A, —(y+A)AgR T+ 29

when|t| is not restricted at all. We obtain
q? for d+2—-T'—u>0

17(a), 3 ()= for d+2—T—u=0

Jo
2In—
a q

qit4 '~ for d+2-T—pu<0
(Ad)

and

const ford+4—-2I'-=u>0

for d+4-2I'-u=0

15(q)= cons%ln%

dta=2l-p  for d+4—2I'— u<O0.

(A5)

q

We consider now the upper-right quadrant of t&uw)
plane, where a solution may be expected. The lides2
—I'—u=0 andd+4—2I"— u=0 divide the quadrant into

four sectors. We investigate next each sector separately

decide whether or not a solution can exist there. Sectioh
defined byd+2—-T"—u>0 andd+4—2I'—x>0. In that
sector Eqs(6.11) and(6.12) reduce to

Do+ A+ A, —(v+A+A)DAG? =0 (A6)

and
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Bg“—(v+Az+A%)g?=0. (A7)

The conclusion id"=2 and w=2. By definition of the
sectors it follows that this can happen only fbr2. In sec-
tion B, d+2—I'—u>0 andd+4—2I"'— w<O0. In this sec-
tor Eq. (A6) is replaced by

Do+Az— (v+A;+ADAQR T +Cyqdt4 2=,
(A8)

The last term on the left-hand side of E&8) is negligible
compared to the second term because of the defining condi-
tion d+2—TI"—u>0. It follows thatI'=2. This implies the
contradictionu>d andu<d and at the same time EA7)
yields alsou=2. (Points on the boundaries of the sectors
will be discussed separately lajeGectiony is the section
where d+2—T'—u<0 and d+4—21"—w>0. Equation

(AB) is replaced by

Dot+A,— (v+ADAGP T+C'qd 42 ~#=0. (A9)

The two equations defining the sector imply that the domi-
nant term on the left-hand side of the equation is the constant
Do+ A,. (The alternative id"= 2, which leads to the contra-
diction u>d and u<d.) A necessary condition for the ex-
istence of a solution iDy+A,=0, but this is impossible
becausd, and A, are both positive definite.

Section 6 is defined by d+2-T'-u<0 and
d+4-2T"—u<0. In this sector Eqs6.11) and(6.12 take
the form

2 A2
o d+4—-2T—pu
=0 (A10)

and

g> A
m_ 2__ _ d+4-2I'—pu_
Bg“—(v+A3)q —‘1(277) BG(F,,LL)q 0,
(A11)

whereF(I", 1) is defined by Eq(6.14 andG(T",u) by Eq.
(7.3. Consider first Eq(A10). The two conditions defining
the sector imply that the two first terms on the left-hand side
are negligible compared to the last term. Therefore, if a so-
lution exists in this sector we must have
F(I',w)=0. (A12)

In Eq. (A11) it is clear that theg? term is negligible com-
pared to theq® ™ 2'"# term. Two possibilities seem to
arise now. Either the last term on the right-hand side of the
equation dominates the two other terms and then we must
haveG(I',u) =0 or the last and first terms are proportional
8 the same power of], leading to the scaling relatiod
+4-T—-2u=0. As discussed in the previous section the
first possibility, which impliesd+4—T"—2,<0, is incon-
sistent with the whole idea of an expansion, where higher-
order terms are not expected to be more violent than lower-
order ones.

Points on the boundaries of the sectors are not possible
solutions, basically because of the logarithmic factors that
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make power-law solutions or even solutions of the fapm 29° A2 do/q
«q TIn(ge/g)]"t and woxg#[In(ge/q)]* inconsistent. The K3 (q)= i d+472r72“J’ dt
final conclusion is that only two possibilities exist. Fadr (2m)° B

>2 we find that the weak-coupling solution is possible. We [f- (-2t Te—¢ "

find also a strong-coupling solution whenever the two equa- (A15)

tionsd+4—T"-2u=0 andF(I",u)=0 have a solution.

How does our discussion change if we use the fitting ofs girect check of Eq(A13) shows that the two last terms
the characteristic frequend$.14 instead of the excitation 5t vere added to the left-hand side of the equation cannot
energy (5.4)? Equation(6.1) is un<_:hang_ed, but a term is yominate over the” term. (In the case thatl+4—T—2u
added to Eq(6.2. After separating high from low mo- _q they have the sampdependenceTherefore, we obtain
menta we recover Ed6.11) and Eq.(6.12 changes into exactly the same solution obtained for the casg(q)

=K (q)=0 discussed before.
(1+C)wg— (v+A3) Q2= I=(q) =K (q) g+ K (0) wgbg * If we use a different expansion, by ascribing, Seyto all
-0 (A13) terms inL—L,, the equations are changed by adding factors
' of q2/wq to the nonintegral terms as obtained in R&f. The
result is again the same. A weak-coupling solution may exist
whereK (q) is given by only for d>2 and the strong-coupling solution is determined
by solving d+4-T'-2u=0 and F(I',x)=0 simulta-
o2 A a0/ neously. S _ _
“(q)= 9 A d+47rfzﬂJ' 0 ddt When considering integral equations of the form dis-
(27)9 B2 cussed above, it is usually expected that a power counting
~ a N Al _ solution may be obtained by equating the power law arising
- (e-Dlt-at"+(@-0-ele—t"] from the integral part of the equation to some other term that
[t“+|e—E|#][t*+|e—t]*+ 1] is also a power law im. Indeed, this is sometimes the case
(A14) [20]. In our case the strong-coupling solution is of a different
nature and the solution of a transcendental equation is re-
and quired to fix the exponent.

[t#+|e—E]“][t +|e—f|#+1]
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